
1

Level 3

LESSON SOLUTIONS

www.2simple.com

2

Lesson 1- Lists..3
Stage 1- Create a list..3
Stage 2- Printing items..3
Stage 3- Adding an item.....................................4
Stage 4- Find the length of the list...................4
Stage 5- Query a list...5
Stage 6- Remove an item...................................6
Stage 7- Making it interactive............................7
Stage 8- Append to the lists - debug..............8
Stage 9- Only one of each item.........................9
Stage 10- Count the number of items............10
Stage 11- Remove an item.................................11
Challenge...13

Lesson 2- Nested Selection.............................15
Stage 1- if, elif, else statements........................15
Stage 2- Making a game.....................................16
Stage 3- Add functions..17
Stage 4- Global variables - debug...................19
Stage 5- Moving the hero...................................19
Stage 6- Nested logic...21
Stage 7- Fight the slug..22
Challenge...24

Lesson 3- Password generator.......................25
Stage 1- The ‘split’ method................................25
Stage 2- Splitting the alphabet.........................25
Stage 3- Choosing a random letter..................26
Stage 4- Adding symbols - debug...................26
Stage 5- Adding symbols...................................27
Stage 6- 4 digit password..................................27
Challenge...28

Lesson 4- Binary and Decimal........................29
Stage 1- Recap – decimals and ‘int’.................29
Stage 2- What is a binary number?.................29
Stage 3- Multiple binary numbers....................30
Stage 4- Alien messages....................................31
Stage 5- Substrings..32
Stage 6- Decimal to binary.................................33
Stage 7- Conversion...33
Challenge...35

Lesson 5- Morse Code......................................36
Stage 1- String split and join.............................36
Stage 2- Split and join - debug.........................36
Stage 3- ‘for-in’ loops...37
Stage 4- Dictionaries..37
Stage 5- Looping through a dictionary...........38
Stage 6- Reversing a dictionary........................38
Stage 7- Encoding a message...........................39
Stage 8- Encoding with spaces........................39
Stage 9- Using a function...................................40
Stage 10- Decoding..40
Challenge...41

Lesson 6 – Linear Search..................................42
Stage 1- Using ‘in’...42
Stage 2- The ‘index’ method..............................42
Stage 3- Missing items..43
Stage 4- Alien attack..43
Stage 5- Alien attack 2..44
Stage 6- Linear search...44
Stage 7- Applying a test.....................................45
Stage 8- Return of the aliens.............................46
Stage 9- Return of the aliens 2.........................47
Stage 10- Return of the aliens 3.......................48
Stage 11- Return of the aliens 4.......................50
Challenge...51

Contents

3

Lesson 1- Lists

I need to buy some gifts for my family - I need some headphones, some cake, a guitar and an
inflatable flamingo.
Let’s put these names in a list. In Python, a list is an ordered collection of items. In our case we will
have a list of four strings.

Tasks

•	 Make a list called ‘shoppingList’ which contains the following strings: “headphones”,
“cake”, “guitar”, “flamingo”. You can use the ‘create list with’ block, or in Python you can
write ‘shoppingList=[“headphones”, ...etc]’.

•	 Print the list and check that you can see the value of the variable in the debug panel
(bottom-right) and the printed list in the output panel (bottom left)

		 Stage 1- Create a list

The items in a Python list can be accessed in order, but starting at zero rather than one. For
example
•	 shoppingList[0] refers to the first item in the list.
•	 shoppingList[1] is the second item.

Tasks

•	 Print the name of the third item in the shopping list using the shoppingList[i] notation.
Remember that the index starts from 0 not 1. What is the correct value of the index ‘i’?.

		 Stage 2- Printing items

Solution

Solution

4

I forgot that my mother wants a pot-plant.
In Python, you can append to the end of a list by using the ‘append’ method.

Tasks

•	 Add “potplant” to the end of the list. You can use the ‘insert at last’ block or the
‘shoppingList.append’ method.

•	 Print the list to the output panel. Check that it contains five items now

		 Stage 3- Adding an item

In Python, we can use the ‘len’ function to find the length of a string or a list.

Tasks

•	 Create a variable called ‘numGifts’ and assign it a value of ‘len(shoppingList)’. Use the
‘length of’ block or the ‘len()’ function.

•	 Print the value of ‘numGifts’ to the output panel

		 Stage 4- Find the length of the list

Lesson 1- Lists

Solution

Solution

5

Did I remember to put ‘cake’ in the list?
•	 What about ‘bananas’?
•	 To answer these kinds of questions we can use the ‘in’ keyword, which tells you if a list
contains an item.

Tasks

•	 Use an ‘if’ statement to print the text “We need to buy cake” if the list contains ‘cake’. You
can use the ‘does list contain’ block or you can write ‘if “cake” in shoppingList’.

•	 Make a variable called ‘containsBananas’. Set its value equal to the value of the statement
‘ “bananas” in shoppingList’. Print the value of ‘containsBananas’ - this should print
‘False’ to the output panel because the list does not contain ‘bananas’.

		 Stage 5- Query a list Lesson 1- Lists

Solution

6

To remove from a list we can use Python’s ‘del’ keyword. You have to specify which index to
delete.
For example ‘del shoppingList[1]’ will delete the second item in the list because the index starts
from zero. ‘del shoppingList[i]’ will delete the item at index i.

Tasks

•	 Someone has put ‘toiletpaper’ in my list by mistake. What index is it? Use the ‘del’
keyword to delete it and then print the list. Use ‘del shoppingList[i]’ and remember that
the index starts from zero.

		 Stage 6- Remove an item

Solution

Lesson 1- Lists

7

Look at design view, it represents a shop with different items that you can buy. Look at the code,
what do you think it does?
Let’s add some comments to explain. In Python you can use a hash sign (#) to make any line into a
comment, or you can surround some text with three double-quote symbols (“ “ “).

Tasks

•	 Add a few comments to explain to someone else what you think the code is meant to do.
Use a hash (#) or three double-quote symbols (“ “ “)

		 Stage 7- Making it interactive

Solution

Lesson 1- Lists

8

The code doesn’t work properly at the moment. Click on some items and see what is printed out.
You should see that the shopping list only ever contains one item - the last one you clicked on.
The problem is that we are re-assigning the variable ‘shoppingList’ rather than appending to the
list. Let’s fix it.

Tasks

• Define the variable called ‘shoppingList’ at the top of your program, outside of the
‘addToList’ function. Initialize ‘shoppingList’ it to an empty list. You can use the ‘create
empty list’ block or you can write: ‘shoppingList = []’

• Change the code inside the function so that ‘item.name’ is appended to the list rather
than the list being re-assigned.

• Check that the code works now. Click on a few items so that your shopping list isn’t
empty.

Stage 8- Append to the lists - debug

Solution

Lesson 1- Lists

9

At the moment you can add the same item’s name multiple times to the list. Let’s make it so that if
an item’s name is already in the list you cannot add it again.

Tasks

• Before appending to the list, use an ‘if’ statement and the ‘in’ keyword to check if the
shoppingList contains the item’s name. Only add it if it is not in the list already.

• Check your program by clicking on the flamingo three times. At the end, your shopping
list should contain just one flamingo.

Stage 9- Only one of each item Lesson 1- Lists

Solution

10

How many items are in the list? Let’s add a button which tells us.

Tasks

• Add two buttons. One should say “How many” and it should be called it ‘btnHowMany’.
The other button should say “Remove” and should be called it ‘btnRemove’.

• Make a function called ‘printHowMany’. Add code to execute the function when
‘btnHowMany’ is clicked.

• Inside the ‘printHowMany’ function print the length of ‘shoppingList’ to the output panel.
• Test your code by adding three elements to the shoppingList and clicking the “Print

length” button. It should say ‘3’ in the output panel.

Stage 10- Count the number of items Lesson 1- Lists

Solution

11

Tasks
• Make a function called ‘removeFromList’. Add code to execute the function when

‘btnRemove’ is clicked.
• Inside the ‘removeFromList’ function, present them with an input box and ask them to

select which index to remove. Remind the user that the index starts from zero.
• Remove the item at that index and print the revised shopping list. Hint - the value

returned from the ‘input’ function is a string. For example it might be “2”. You will need to
convert the string into an integer (eg. 2).

• Test your code by adding some items to the list and then deleting the item at index zero
until your list is empty.

Stage 11- Remove an item Lesson 1- Lists

Solution

12

Lesson 1- Lists

13

Try out the following challenges.

Suggestions
• Instead of printing to the console, add a shop assistant character who tells the user the

answers.
• Instead of stopping users adding multiple items, instead ask them if they are sure that’s

what they want to do.
• Stop users deleting items that are not there - for example if a shopper has 3 items then

they should not be able to delete the item at index 5.
• To help the user, when you ask for the item to be deleted, print the item numbers

alongside the item names. Use a for loop to do this - for example 0: flamingo, 1: cake, 2:
laptop.

• Instead of asking the user which index they want to delete, ask them which name they
want to delete and then remove that name.

• Maintain several lists at once - shoppers should be asked their name and the code should
maintain a different list for each person.

Challenge Lesson 1- Lists

Possible Solution

14

Lesson 1- Lists

15

Lesson 2- Nested Selection

When you put an ‘if’ statement inside another ‘if’ statement they are called ‘nested’.
You can create complicated branching code in this way. In fact we use nested if/else decision
making in real life all the time. But real life is boring.
And watch out, a giant cave slug has just attacked you.

Tasks
• After the ‘if’ statement, add an ‘elif’ statement that checks if action is ‘F’. If so, make

a variable called ‘luck’ and assign it a random value between 1 and 10. Use ‘random.
randint’.

• Use a nested ‘if’ statement inside the ‘elif’ block to check if ‘luck’ is less than 4. If so, alert
the text ‘It eats you alive’. Use ‘pip.alert’ to do this.

• Add an ‘elif’ statement to check if luck is less than 7. If so, alert the text ‘It chews off a big
chunk of flesh, but you escape’.

• Add an ‘else’ statement which alerts the text ‘You fight well - the slug crawls off’.
• Test your code a few times. Fight the slug and check that you get random outcomes.

Stage 1- if, elif, else statements

Solution

16

Let’s start making an adventure game. There will be three locations in our game. We will call
them 0, 1 and 2. They will actually be a desert, the woods and a cave. You start in location 0 (the
desert). The user can enter ‘L’ to go left or ‘R’ to go right.

Tasks
• Underneath the ‘import’ statements, make a variable called ‘playing’ and initialize it to

True, and another called ‘location’, initialized to 0.
• Make a ‘while’ loop which runs while playing is True. In Python you can write ‘while

playing:’
• Next, use an ‘if’ statement to check if the player is at location 0.
• If so, use ‘pip.alert’ to say ‘You are in the desert’, use ‘background.set_image’ to set the

background image to a desert and then use an ‘input’ statement to ask the user ‘Enter R
to go right, or X to exit’. Assign their response to a variable called ‘action’.

• Use an ‘elif’ statement to check if location equals 1. If so, alert ‘You are in the woods’, set
the background image to woods and then input ‘Enter L to go left, R to go right, or X to
exit’. Assign their response to ‘action’.

• Add an ‘else’ statement - this code will be executed if the player is at location 2. Alert the
text ‘You are in the caves’, set the background image to the cave and then input ‘Enter L
to go left, or X to exit’. Assign their response to ‘action’.

• At the end of your while loop, check if ‘action’ equals ‘X’ and if so set playing to False.
Play the game and check it tells you that you’re in the desert. Enter X to exit.

Stage 2- Making a game Lesson 2- Nested Selection

Solution

17

Lesson 2- Nested Selection

When the user enters action ‘L’ we need to move left, and when they enter ‘R’ we need to move
right. We should make functions for these because they will need to contain quite a lot of code.
Let’s add some visual elements to make it more interesting

Tasks
• Before your while loop, define two functions called ‘moveLeft’ and ‘moveRight’. They

don’t need any parameters.
• Inside the ‘moveLeft’ function make ‘hero’ glide to the point (0, 500) over 3 seconds. You

can use the ‘glide to’ block or write ‘hero.glide(0, 500, 3)’. Make the program sleep for 3
seconds and then set hero.x = 500 and hero.y = 500.

• Inside ‘moveRight’ make ‘hero’ glide to (1000, 500) over 3 seconds. Then, make the
program sleep for 3 seconds and reposition the hero.

• After checking if action is ‘X’, use ‘elif’ to check if ‘action’ equals ‘L’. If so execute the
function ‘moveLeft’. Use another ‘elif’ to check if action equals ‘R’ and if so execute the
function ‘moveRight’.

• Test the program - make the hero move right a few times and then enter ‘X’ to exit. Don’t
worry that you always stay in the desert - we haven’t written that code yet.

Stage 3- Add functions

Solutions on following page...

18

Solution

19

Before we go much further we need to recap how variables work in Python. You can have a
variables with the same name inside and outside a function:
This prints the word ‘Global value’ not ‘CHANGED VALUE’.
This is good - it means that other programmers can use variables called ‘val’ inside their functions,
safe in the knowledge that they aren’t messing up the value used outside by someone else.
In our program we actually do want change the value of ‘location’ inside our moveLeft and
moveRight functions, so we need to tell Python to let us change it.
This is called declaring a variable ‘global’, and you need to do it whenever you want to change a
‘global’ variable inside a function

Tasks
• Run the code. Check that you get an error. Python won’t let you change the variable

unless you mark it as ‘global’. Fix it by declaring ‘location’ as global. Check that it prints 2.

Stage 4- Global variables - debug

We need to change the value of the variable ‘location’ inside our functions.

Tasks
• In the ‘moveLeft’ function declare ‘location’ as global. After the 3 second sleep, change

‘location’ to ‘location’ minus one.
• In the ‘moveRight’ function declare ‘location’ as global. After the 3 second sleep, change

‘location’ to ‘location’ plus one.
• Test your code. Go right and check that you reach the woods. In the debug panel you

should see that location is 1. Use X to exit.

Stage 5- Moving the hero

Lesson 2- Nested Selection

Solution

Solution on following page...

20

Lesson 2- Nested Selection

21

Different things can happen in our game depending on where the user is. For example, the caves
are full of giant slugs. Nested ‘if’ statements are useful but sometimes it is better to separate out
some logic into a function otherwise your code can get long and complex. Often, a combination of
nested ‘if’ statements and functions is best.
Let’s make a function to handle the slug fighting.

		 Stage 6- Nested logic Lesson 2- Nested Selection

Solution

22

Let’s fill in the details of the slug fighting function. We will use a variable called ‘energy’ and each
time you lose a fight your energy should decrease.

Tasks
•	 After setting ‘location = 0’, make another variable called ‘energy’ and initialize it to 3.
•	 Inside the ‘fightSlug’ function, delete the alert, make a variable called ‘luck’ and assign it a

random value between 1 and 10. Use ‘random.randint’.”
•	 Use an ‘if’ statement to check if luck is less than 4. If so, alert the text ‘It eats you alive’

and set ‘playing’ equal to False. Make sure you declare ‘playing’ as global first.
•	 Add an ‘elif’ statement to check if luck is less than 7. If so, alert the text ‘It chews off a

big chunk of flesh, but you escape’ and decrease ‘energy’ by 1. Make sure you declare
‘energy’ as global first.

•	 Add an ‘else’ statement which alerts the text ‘You fight well - the slug crawls off’.
•	 Test your game by fighting the slug a few times. Check that the value of ‘energy’ shown

in the debug panel is correct.

		 Stage 7- Fight the slug Lesson 2- Nested Selection

Solution

Solution continued on following page...

23

Lesson 2- Nested Selection

Solution

24

Try out the following challenges.

Suggestions
•	 Check when the user’s energy drops to zero and if so set playing = False and make sure

the game ends.
•	 Tell the user their energy level when they reach a new location and tell them when the

game is over.
•	 At the moment there is nothing stopping you going left from the desert, or right from the

cave. location will become -1 or 3. Add code to stop this.
•	 Add another location - use your imagination.
•	 Make it so that the hero can move in four directions not just two.
•	 Add some different events that can happen in the different locations. This could be other

monsters that you can fight or anything else that involves ‘if’ and ‘elif’ statements.
•	 Add a monster that asks a riddle - if the user gets it right they can escape.
•	 Add collectable objects which help you fight the slug, or that boost your energy level.

		 Challenge Lesson 2- Nested Selection

25

Lesson 3 – Password Generator

In Python, you can split any string using the ‘split’ method. You need to tell the method what
‘separator’ to use. For example, here is a string consisting of four names separated by the ‘&’
symbol.

Tasks
•	 Make a list called ‘namesList’ which contains the four names in the string ‘namesStr’.

Choose the right delimiter to use. Print ‘namesList’
•	 Make a list called ‘placesList’ which contains the four places in the string ‘placesStr’.

Choose the right delimiter to use. Print ‘placesList’
•	 Make a list called ‘coloursList’ which contains the four colours in the string ‘coloursStr’.

Choose the right delimiter to use. Print ‘coloursList’
•	 Make a list called ‘booksList’ which contains the four books in the string ‘booksStr’.

Choose the right delimiter to use. Print ‘booksList’

		 Stage 1- The ‘split’ method

Now we are ready to start our password generator.
The code for this stage contains a string variable called ‘lowerStr’, equal to the lower case letters
of the alphabet, separated by commas.
lowerStr = “a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z”
We need to make a list from this so that we can easily choose random letters for our password.
Our delimiter is a comma.

		 Stage 2- Splitting the alphabet

Solution

Solution

26

To pick a random item from a list of 26 items we need to choose a random index between 0 and
25.In general, to pick a random item from a list we need to choose a random index between 0 and
the length minus 1.

Tasks
•	 Import the ‘random’ module. This should go at the top of your program.
•	 Create a function called ‘getRndItem’. This function should take one parameter called

‘myList’. This function will return a random item from whatever list you pass in to it.
•	 Inside the function, create a variable called ‘index’ and use ‘random.randint’ to assign it a

random value between 0 and the length of ‘myList’ minus one.
•	 Make the function return the item at that index in myList.
•	 Check it works. At the end of your program, print(getRndItem(lowerList)) and run your

program a few times. Check that it prints random letters.

		 Stage 3- Choosing a random letter Lesson 3 – Password Generator

Solution

Someone has been trying to get a random symbol from a string of symbols, but it’s not working.
Try to run the code. It doesn’t work at the moment, it just outputs all five symbols all the time.
Let’s fix it.

Tasks
•	 There is something wrong with the definition of ‘symbolsStr’. Fix this first. Hint - the

string is split using comma as the delimiter.
•	 There are five symbols, so we can pick from 0 to 4. At the moment if you keep running

the program it will eventually fail with an error ‘list index out of range’. Why? Fix this by
making sure it selects an index between 0 and 4.

•	 Run your program a few times and check the ‘index’ variable is always between 0 and 4
and that it prints random symbols.

		 Stage 4- Adding symbols - debug

Solution

27

Let’s add symbols to our program and use our function to get a random symbol.

Tasks
•	 At the top of your program, after defining ‘lowerStr’, define another string called

‘symbolsStr’ and assign it the value “@,%,?,$,_’. Make a list called ‘symbolsList’, split
‘symbolsStr’ using comma as the delimiter and assign it to ‘symbolsList’.

•	 Use your function ‘getRndItem’ to print a random symbol. Check that each time you run
the program you get a random symbol.

		 Stage 5- Adding symbols Lesson 3 – Password Generator

Solution

Let’s make a 4 digit random password, consisting of two lowercase letters followed by two
symbols.

Tasks
•	 Make a function called ‘getPwd’. It should take no input parameters.
•	 Inside, create a variable called ‘password’. Use the ‘+’ operator to join together two

random letters followed by two random symbols. Return ‘password’.
•	 At the bottom of your program print(getPwd()) and check that it prints a random four-

character password. Run it a few times to check.

		 Stage 6- 4 digit password

Solutions on following page...

28

Solution

Lesson 3 – Password Generator

Try out the following challenges.

Suggestions
•	 Create a counter that stores how many times the password has been checked so far.

Display it on the screen.
•	 Change the code so that it creates passwords which also contain some random numbers

or uppercase letters, or both. These will be even harder to break.
•	 Make a new function that will output a list of ‘n’ random passwords (where ‘n’ is a

number you pass into the function).
•	 Make a new function into which you can pass four numbers n_low, n_upp, n_sym, n_dig.

Your function should create a random password consisting of ‘n_low’ lowercase letters,
‘n_upp’ uppercase letters, ‘n_sym’ symbols and ‘n_dig’ digits 0-9.

•	 Add a ‘Start’ button to the stage. The password hacking should start when you click the
button. Add a ‘Stop’ button to stop the hacking.

		 Challenge

29

Lesson 4 – Binary and Decimal

So far all the numbers we have used have been in ‘base 10’. Numbers in base 10 are also called
‘decimal’ or ‘denary’ numbers. The place values are the powers of 10. Reading right to left they are
1, 10, 100, 1000... Each one is allowed to hold a digit fom 0 to 9.
Reading from right to left, we can work out what 239 means. It means 9 lots of 1, 3 lots of 10 and
2 lots of 100.
The ‘int’ function converts from a string to a decimal number using base 10

Tasks
•	 ‘strA’ is a string. Convert it to a number called ‘decA’ and print ‘decA’. Use the ‘int’

function.

		 Stage 1- Recap – decimals and ‘int’

Solution

Numbers do not have to be represented in base 10. Computer hardware stores numbers in base
2 (binary). The place values are the powers of 2 and each is allowed to hold a digit 0 or 1. For
example, the number 100111 should be thought of like this:
Reading from right to left, it consists of 1 lot of 1, 1 lot of 2, 1 lot of 4, 0 lots of 8, 0 lots of 16 and
1 lot of 32. Add them up and you get 39. This is the decimal value of the binary string “100111”.
In Python you can use the ‘int’ function with an extra parameter at the end to indicate what base
to use.

Tasks
•	 ‘binA’ is a binary string. Convert it to a decimal called ‘decA’. Use the ‘int in base 2’ block

or the ‘int(binA, 2)’ function. Print ‘decA’.

		 Stage 2- What is a binary number?

Solution

30

If we have a list of binary numbers, we can loop through the list and convert each one to a
decimal.
Then we can return a new list containing the decimal numbers.

Tasks
•	 Make a function called ‘decodeSignal’. It should take one parameter, called ‘binSignal’.

This will be a list of binary strings.
•	 Inside the function make an empty list called ‘decodedList’.
•	 Use a ‘for binStr in binSignal’ loop to loop through each of the strings in the list

‘binSignal’.
•	 Inside the loop, convert ‘binStr’ to a decimal number called ‘dec’ using the ‘int’ function in

base 2.
•	 Append each decimal number to ‘decodedList’
•	 At the end of your function, return ‘decodedList’.
•	 Test your function by printing ‘decodeSignal(signalA) - check that it prints a list of

decimal numbers’

		 Stage 3- Multiple binary numbers Lesson 4 – Binary and Decimal

Solution

31

In 1974 a binary message called the ‘Arecibo message’ was sent from Earth towards a star
cluster 21000 light years away, in an attempt to communicate with extra-terrestrials. It consisted
of 0’s and 1’s which generate a picture of certain numbers, scientific formulae as well as a picture
of a human and the Solar System.
What if they replied? They might reply with another number sequence to let us know they are
intelligent. But space is full of random radio signals from all kinds of interstellar objects.

Tasks
•	 In design mode, find the three interstellar objects called ‘objectA’, ‘objectB’ and ‘objectC’.

Use ‘objectA.say(signalA, 10)’ to make objectA say signalA, and similar for objectB and
objectC.

•	 Make a function called ‘onClick’. This function needs no parameters.
•	 Inside, create a variable ‘decodedA = decodeSignal(signalA)’ and similar for signalB and

signalC.
•	 Use the ‘.say’ method to make each object show the decoded versions of each signal.
•	 Add a ‘when click’ listener to the button called ‘decodeButton’. When the user clicks the

button it should execute the function ‘onClick’. To do this you can use the ‘When click on’
block or write ‘pip.eventmanager.when_click(decodeButton, onClick)’.

•	 Run your program. Two of the number sequences look random, but one doesn’t and
could be from intelligent life - which one is it?

		 Stage 4- Alien messages Lesson 4 – Binary and Decimal

Solution

Solutions continued on following page...

32

Solution Lesson 4 – Binary and Decimal

To access a character in a string you can use square brackets. The index you use starts at zero.
For example the first letter ‘k’ in the string “Take me to your leader” is at index 2.
To access all of the characters from index 2 onwards you can use ‘string slicing’:

Tasks
•	 Print the string “terminate, exterminate” using string slicing. What is the correct index?

		 Stage5- Substrings

Solution

33

There is a function called ‘bin’ in Python to convert from decimal to a binary string.
Python always puts the two characters ‘0b’ at the front to tell you that it is in binary. We can
remove them using string slicing to get the string that we want, containing just 0’s and 1’s

Tasks
•	 Use the ‘bin’ function to convert ‘dec’ to a string called ‘binStr’. Print the value of ‘binStr’.

Check that you see the ‘0b’ characters at the start
•	 Use string slicing to print ‘binStr’ without the ‘0b’ characters.

		 Stage 6- Decimal to binary

Solution

Lesson 4 – Binary and Decimal

We can use the ‘bin’ function to make a function that encodes a signal to be sent back to the
aliens.

Tasks
•	 Make a function called encodeSignal. It should take one parameter called ‘decSignal’
•	 Inside, create an empty list called ‘encodedList’
•	 Use a ‘for dec in decSignal’ loop to loop through each of the decimal numbers in the list

‘decSignal’.
•	 Inside the loop, convert ‘dec’ to a binary string without the ‘0b’ characters. Use the ‘bin’

function and string slicing.
•	 Append each string to ‘encodedList’
•	 At the end of your function, return ‘encodedList’.
•	 Test your function by sending a reply from Earth to the alien galaxy. What number

pattern did the aliens use? At the end of the ‘onClick’ function, add a ‘sleep(5)’ command.
Make a list that contains the next five numbers in the sequence, encode it in binary using
the ‘encodeSignal’ function and make ‘earth’ say it.

		 Stage 7- Conversion

Solutions on following page...

34

Solution Lesson 4 – Binary and Decimal

35

Try out the following challenges.

Suggestions
•	 Make it so that the user can enter their own sequence of numbers to be sent to the

aliens.
•	 Do some internet research and find the Arecibo message. Try and write it as a long list

of 1’s and 0’s, separated by commas. It starts off: [“00000010101010000000000”,
“00101000001010000000100”...]

•	 See if you can encode it as a sequence of decimal numbers.

		 Challenge Lesson 4 – Binary and Decimal

36

Lesson 5 – Morse code

If you have a string, you can split it by specifying a ‘delimiter’ and you will get a list containing the
individual items. The reverse process is called ‘join’. Given a delimiter and a list, the join method
will join the items together.
“&”.join([“Andy”, “Bala”, “Chris”, “Denise”])
Notice that you do not write list.join(delimiter), you write delimiter.join(list). This is because ‘join’ is
a method of the String class, not the List class

Tasks
•	 Use ‘split’ to split ‘encoded_string’ into a list called ‘encoded_list’ using space as the

delimiter. Print the list.
•	 Use ‘join’ to join ‘encoded_list’ into a string called ‘encoded_string2’. Use space as the

delimiter. Print it and check that you get back the original string.

		 Stage 1- String split and join

Solution

Someone wants to split the string “this_is_a_secret_message” using underscore (_) as the
delimiter and then join the list together with dashes (-).
Their program doesn’t work, see if you can fix it.

Tasks
•	 Fix the code. It should print “this-is-a-secret-message”. Remember the syntax is

‘delimiter.join(list)’.

		 Stage 2- Split and join - debug

Solution

37

In Python you can use a ‘for-in’ loop to go through each letter in a string, or each item in a list. The
code is the same.

Tasks
•	 Use a ‘for letter in my_string’ loop to print each letter in the string.
•	 Use a ‘for symbol in my_list’ loop to print each symbol in the list.

		 Stage 3- ‘for-in’ loops Lesson 5 – Morse code

Solution

We will also need to find a way to get the Morse code symbol for a letter. To do this we need to
use a ‘dictionary’. Here is a dictionary, it stores some letters and their Morse equivalents:
The English letters are called the ‘keys’ of the dictionary and the Morse versions are called the
‘values’. You can access a value using square brackets:
eng_to_morse[“C”]

Tasks
•	 Print “A” in Morse code.

		 Stage 4- Dictionaries

Solution

38

You can use a for-in loop to loop through a dictionary as well.
It will give you the keys of the dictionary (in our example this is the English letters)

Tasks
•	 Use ‘for key in eng_to_morse’ to loop over the dictionary keys.
•	 Inside your loop, make a variable called ‘value’ which should be set to ‘eng_to_

morse[key]’.
•	 Use ‘print(key, value)’ to print the items one by one. Check that this prints the letters and

their Morse equivalents.

		 Stage 5- Looping through a dictionary Lesson 5 – Morse code

Solution

What if I give you ‘ - . . ‘ and I want to look up the corresponding English letter?

Tasks
•	 At the top of your program make an empty dictionary called ‘morse_to_eng’. You can

write ‘morse_to_eng = { } ‘ to do this.
•	 Inside your for loop, set ‘morse_to_eng[value] = key’. Notice how key and value are

reversed here.
•	 At the end of your program, print ‘morse_to_eng[“-..”] and check it gives you “D”

		 Stage 6- Reversing a dictionary

Solution

39

We’re finally ready to encode a message. Our algorithm will need to:
•	 Make an empty string for the encoded message.
•	 Loop through each letter of the message and find its encoded version.
•	 Append them to the string

Tasks
•	 Make an empty string (“”) called ‘encoded_msg’.
•	 Loop through ‘orig_msg’ using a ‘for letter in orig_msg’ loop.
•	 For each letter, find the encoded version from the dictionary and append it to the end of

‘encoded_msg’ using ‘ + ‘. You can write ‘encoded_msg = encoded_msg +’.
•	 Run your code and look in the debug panel (bottom-right). You should see that

‘encoded_msg’ contains the encoded combinations of dots and dashes without any
spaces between. We’ll fix that next.

		 Stage 7- Encoding a message Lesson 5 – Morse code

Solution

Our encoded message isn’t correct. Messages in Morse code need a space between each letter
- in reality, this would correspond to a short pause in the transmission. There are many different
ways of doing this, the neatest way is to put the items in a list and then ‘join’ the elements of the
list together using a space.

Tasks
•	 Delete the code that creates the empty string ‘encoded_msg’. Replace it with an empty

list, ‘encoded_msg_list = []’
•	 Instead of using + to append to the string, use the list ‘.append’ method to append each

Morse symbol to the list.
•	 At the end of your program, make a new variable called ‘encoded_msg’ which is equal to

‘encoded_msg_list’, joined together by spaces. Use the ‘join’ method.
•	 Check that the debug panel conains the correct value for ‘encoded_msg’.

		 Stage 8- Encoding with spaces

Solution

40

Before we work on decoding it will be nice to place our ‘encode’ algorithm inside a function. Then
we can make another function to decode.

Tasks
•	 Define a function called ‘encode’. It should take one parameter called ‘orig_msg’
•	 Delete the line of code ‘ orig_msg = “SECRET” ‘. You will be able to pass any string into

your function.
•	 Test your code by adding the line ‘print(encode(“SECRET”))’. It should print the correct

encoded string, “... . -.-. .-. . -”.
•	 Move all your code into the function (apart from the definition of ‘eng_to_morse’). At the

end of your function, return the variable ‘encoded_msg’.

		 Stage 9- Using a function Lesson 5 – Morse code

Solution

Decoding is harder. We need to split the Morse string using a space in order to get the individual
symbols, and we need to be able to look up the English letter given a Morse symbol.
One thing is easier - at the end we don’t need to join up the letters using a space because English
doesn’t need spaces between letters.

Tasks
•	 Make the reversed dictionary. Define an empty dictionary called ‘morse_to_eng’. Loop

through ‘eng_to_morse’, set ‘value = eng_to_morse[key]’ and set ‘morse_to_eng[value] =
key’.

•	 Define a new function called ‘decode’. It should take one parameter called ‘encoded_
msg’. Inside, create an empty string called ‘decoded_msg’

•	 Use the ‘split’ function to split ‘encoded_msg’ using space as the delimiter. Store the
result as ‘encoded_msg_list’.

•	 Use a ‘for symbol in encoded_msg_list’ loop to go through the symbols one by one.
•	 Inside the loop, get the correct English letter in the reversed dictionary and append it to

‘decoded_msg’. Finally, return ‘decoded_msg’
•	 Test your code by adding the line ‘print(decode(“... . -.-. .-. . -”)).’ It should print the word

‘SECRET’

		 Stage 10- Decoding

Solutions on following page...

41

Solution
Lesson 5 – Morse code

Try out the following challenges.

Tasks
•	 Make a new function called ‘playMorse’. It should take one parameter called ‘morse_

string’ which will be a string.
•	 Inside the function, loop through each character of the string. If it is a dot, play the sound

‘sfx/dot.mp3’ and sleep for a quarter of a second
•	 If it is a dash play the sound ‘sfx/dash.mp3’ and sleep for half second
•	 If it is a space sleep for a second. Test your code by encoding another word and playing

the sounds.
•	 Go into design mode and find the lantern. For a dot character, show the lantern for a

quarter of a second
•	 For a dash, show the lantern for a second.
•	 So far we have only dealt with single words. To deal with a sentence you need to encode

spaces as slash (/). You will need to edit the dictionary as well as change some of the
logic in the encode and decode functions.

		 Challenges

42

Lesson 6 – Linear Search

Python has a simple and powerful way to search lists. The ‘in’ operator will tell us if a list contains
a given item.
It returns True or False.

Tasks
•	 If the number 8 is in the list print “Found it”. Use the ‘in’ keyword and an ‘if’ statement.

		 Stage 1- Using ‘in’

Solution

But what if we want to know the position of an item as well? In this case, the ‘in’ keyword doesn’t
really help us.
Python lists have a method called ‘index’ that will tell us the index of the first matching item.
Remember that in a list, the index starts from zero.

Tasks
•	 Print the index of the number 7 in the list. Use the ‘index’ keyword.

		 Stage 2- The ‘index’ method

Solution

43

If a list doesn’t contain a specific item then the ‘index’ method will give an error.
It is best to first check if the item is there and only then find its index.

Tasks
•	 Run the code and check that it gives an error. This is because 9 is not in the list. Add an

‘if’ statement to fix the code. Use ‘in’ to check if the 9 is in the list and only then get the
index.

•	 Add a corresponding ‘else’ statement which prints “Not found”. Run your code and check
that it prints ‘Not found’ for the item 9.

		 Stage 3- Missing items 6 – Linear Search

Solution

In the next few stages we will make a game using a list. Aliens are attacking and the locations of
their spaceships are stored in a list called ‘locations’.

Tasks
•	 Add a ‘while True’ loop. Inside, add an ‘input’ statement to ask the user “Where do you

want to fire? Enter a number from 0 to 10, or -1 to quit”. Save their response in a variable
called ‘num’. Convert it to a number using the ‘int’ function.

•	 Add an ‘if’ statement and check if ‘num’ is -1. If so break out of the loop using a ‘break’
statement.

•	 Else, check if ‘num’ is in the list using the ‘in’ keyword.
•	 If it is, alert “Hit”. Else alert “Miss”. Use pip.alert.
•	 Test that it works by choosing number ‘5’. Enter -1 to quit when you are ready.

		 Stage 4- Alien attack

Solution

44

Solution

When you hit a ship we need to find the index and remove the ship at that index so you can’t
shoot it again.

Tasks
•	 After alerting “Hit”, find the index of ‘num’ in the list and store it in a variable called ‘hit_

index’.
•	 Use the ‘del’ keyword to delete the item at index ‘hit_index’ in the list.
•	 Check if the length of the list is zero using the ‘len’ function and if so print “Well done”

and break out of the loop.
•	 Test your game and check that it works by destroying the ships. They are at locations 0,

7, 3, 8 and 5.

		 Stage 5- Alien attack 2 6 – Linear Search

Another way to find the position of an item in a list is to use a ‘linear search’. We’ll make a
function that checks the item at index 0, then index 1, then index 2, and so on. A good way to do
this in Python is to use a ‘range’.
If we find a match we’ll return the index. We’ll return -1 from our function to mean that the item
wasn’t found, this is a standard used in many programming languages.

Tasks
•	 Create a function called ‘get_index’ which takes one parameter called ‘x’.
•	 Inside, write a ‘for i in range’ loop. Make sure that ‘i’ goes through each index of the list.

You should specify the end of the range using the ‘len’ function.
•	 Inside the for loop, create a variable, ‘item = locations[i]’. Use an ‘if’ statement to check if

‘item’ is equal to ‘x’. If so, return the value of ‘i’.
•	 At the end of your function return -1. This will happen if the item is never found.
•	 Test your function by printing ‘get_index(117)’ and ‘get_index(4000)’. Check that it prints

2 and -1.

		 Stage 6- Linear search

Solutions on following page...

45

Solution 6 – Linear Search

Solution on following page...

Sometimes we don’t want to check if an item matches something, but instead we want to check
if an item passes some kind of test. For example, if we have two sprites we could check if they
are within 10 pixels of each other. This is something you can’t do with ‘index’, but you can with a
linear search.
First, notice that ‘x’ is within 10 pixels of ‘y’ if x is greater than (y - 10) and less than (y + 10).

Tasks
•	 Inside your function, change the line which checks if ‘item’ is equal to ‘x’. Instead, check if

‘x > item - 10 and x < item + 10’
•	 Is there a number close to 116 in the list? Which one? What about close to 4000? Test

your function by printing get_index(116) and get_index(4000). Check that it prints 2 and
-1.

		 Stage 7- Applying a test

46

Solution 6 – Linear Search

The aliens are attacking again. This time we will add a visual aspect to the game.
There are five ships, called ‘ship0’, ‘ship1’, ‘ship2’, ‘ship3’ and ‘ship4’. They are stored in a list. We
will fire lasers at them. We’ll never get the position spot-on but we can check if we are close using
a linear search.
First let’s make the player move the launcher and fire.

Tasks
•	 Create a function called ‘on_key_press’ which takes one parameter called ‘key’.
•	 Inside, check if ‘key’ is equal to ‘Z’. If so, make the launcher move left. Else if it equals ‘X’,

make it move right.
•	 Else if it equals ‘F’, set ‘laser.x’ equal to ‘launcher.x’, show the laser, and after a quarter of

a second, hide it.
•	 Finally, make your program execute the function ‘on_key_press’ when any key is pressed.

You can use the ‘when key is pressed’ block or the code ‘pip.eventmanager.when_
key(on_key_press)’.

•	 Test that your program works by moving left and right a few times.

		 Stage 8- Return of the aliens

Solutions on following page...

47

We need to check we are close to one of the ships. We’ll use a function called ‘get_index’ which
will tell us which index (if any) we are close to. Remember -1 means that we are not close to
anything.

Tasks
•	 Create a new function called ‘get_index’ which takes one parameter called ‘x’.
•	 Inside, add a ‘for i in range’ loop. Use the ‘len’ function to make sure that ‘i’ goes through

each index of the list ‘ships’.
•	 Set ‘ship = ships[i]’. This will be the ship at index ‘i’.
•	 Use an ‘if’ statement to check if ‘ship.x’ is close to ‘x’. To do this you can write ‘if x >

ship.x - 10 and x < ship.x + 10’. If it is, return ‘i’.
•	 At the end of your function return -1.”
•	 Test your function by printing the value of get_index(121). It should print 0, since the

x-coordinate of the first ship is 120.

		 Stage 9- Return of the aliens 2

Solution

6 – Linear SearchSolution

Solution continued on following page...

48

Solution 6 – Linear Search

Let’s make the spaceship look like it has been hit. We need to position an explosion and then hide
the ship.

Tasks
•	 At the end of the ‘on_key_press’ function, after hiding the laser, set ‘hit_index’ equal to

‘get_index(laser.x)’. This will tell us the index of the ship we got close to with our laser.
•	 Use an ‘if’ statement to check if ‘hit_index’ is not -1. In that case we hit a ship. Make a

variable called ‘ship = ships[hit_index]’. This is the ship that we hit.
•	 Set ‘explosion.x = ship.x’ and ‘explosion.y = ship.y’, show the explosion, and after half a

second hide it and also hide the ship.”
•	 Test your game and check that it works.

		 Stage 10- Return of the aliens 3

Solution on following page...

49

6 – Linear SearchSolution

50

Now let’s delete the ship from the list. We need to do this so you can’t hit it again next time.

Tasks
•	 After hiding the ship, use the ‘del’ keyword to delete ‘ships[hit_index]’.
•	 Check if the length of the list is zero using the ‘len’ function and if so, use pip.alert to say

(“Well done”) to the user, and then stop the launcher moving.
•	 Test your game and check that it works.

		 Stage 11- Return of the aliens 4

Solution

6 – Linear Search

51

Try out the following challenges.

Suggestions
•	 Add some sound effects. Play a sound when the laser fires, when a ship is hit and at the

end of the game
•	 Make the enemy ships fall out of the sky when they are hit
•	 Add a textfield and show the player’s score in it. Update the score each time they hit a

ship.

		 Challenge 6 – Linear Search

Possible solution

